深圳市维尔乐思科技有限公司

Features

－Frequency bands
－WL1625A： $315 \mathrm{MHz}, 433 \mathrm{MHz}$
－WL1625B： $315 \mathrm{MHz}, 433 \mathrm{MHz}$ ， $868 \mathrm{MHz}, 915 \mathrm{MHz}$
－Operating voltage range： $2.4 \mathrm{~V} \sim 5.5 \mathrm{~V}$
－ $0.5 \mu \mathrm{~A}$ deep sleep current with data retention
－Low RX current
－ $4.5 \mathrm{~mA} @ 433 \mathrm{MHz}$
－ $5.8 \mathrm{~mA} @ 868 \mathrm{MHz}$
－Supports FSK modulation
－FSK support up to 50 K sps symbol rate
－Good reception sensitivity under 0.1% BER （BW＝93．6k）
－－108dBm＠25Kbps，433MHz
－Wide RF input power range：from sensitivity to $+10 \mathrm{dBm}$
－Support 2－wire $\mathrm{I}^{2} \mathrm{C}$ interface for operation configuration
－On－chip VCO and Fractional－N synthesizer with integrated loop filter
－Supports low cost 16 MHz crystal
－FCC／ETSI Compliant
－Package type：10－pin SOP－EP

Applications

－Iron rolling doors
－Ceiling lamps
－Wireless switches
－Drying racks
－Wireless doorbells
－Integrated ceilings
－Other wireless products

General Description

The WL1625x receiver devices adopt a fully－integrated，low－IF FSK receiver with an automatic gain control（AGC）function and a fully－integrated FSK demodulator．The synthesizer is formed by an integrated VCO and a fractional－N PLL to support the $315,433,868$ ，and 915 MHz frequency bands．The devices only require a crystal and a minimum number of passive components to fully implement a FSK receiver．With this high level of functional integration，these devices provide excellent solutions for low－cost，low power wireless applications．

The devices achieve -112 dBm sensitivity for the 433.92 MHz bands．They operate from a supply voltage of 2.4 V to 5.5 V and typically require 4.5 mA at 433.92 MHz ．The devices support a sniff RX mode，where the on／off RX mode function can be controlled by an MCU to achieve a lower than average power consumption using duty RX mode operation．
The WL1625 series offers two types of ICs．One is the BC2502A which covers the 315 and 433 MHz bands while the BC2502B offers a choice of four frequency bands．

Part Number	Frequency Band
WL1625A	$315 \mathrm{MHz}, 433 \mathrm{MHz}$
WL1625B	$315 \mathrm{MHz}, 433 \mathrm{MHz}, 868 \mathrm{MHz}, 915 \mathrm{MHz}$

Block Diagram

Pin Assignment

Pin Description

Pin No．	Pin Name	I／O	Description
1	SD／SCL $^{(1)}$	DI	RX mode shut－down control，should be pulled low in RX Mode
		DI	I 2 C clock input line in Configuration Mode
2	TEST	-	Not connected，leave floating
3	RFIN	Al	RF LNA input
4	AVDD	PWR	Analog power supply
5	XO	AO	Crystal oscillator output
6	XI	AI	Crystal oscillator input
7	DVDD	PWR	Digital power supply
8	TEST	-	Not connected，leave floating
9	CLDO 2	PWR	LDO output，connected to a bypass capacitor
10	DO／SDA ${ }^{(1)}$	DO	Demodulated data output in RX Mode
	DI／DO	I 2 C data line in Configuration Mode	
-	VSS／EP ${ }^{(2)}$	PWR	Exposed pad，must be connected to ground

Legend：DI：Digital Input；DO：Digital Output；AI：Analog Input；
AO：Analog Output；
PWR：Power．
Note： 1 ．The DO／SDA \＆SD／SCL pins are default connected to a pull－high resistor after a power on reset．After entering the RX mode，these pull－high resistors are disconnected automatically．An analog debounce function is added to these two pins．
2．The VSS／EP pin located at the exposed pad．
3．The backside plate of EP shall be well soldered to ground on PCB，otherwise it will downgrade RF performance．

Absolute Maximum Ratings

Supply Voltage \qquad $\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$ to 5.5 V

Input Digital Voltage \qquad $. \mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Input Analog Voltage \qquad ． $\mathrm{Vss}^{-}-0.3 \mathrm{~V}$ to 2.1 V

Storage Temperature \qquad $-60^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Operating Temperature \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

ESD HBM \qquad $\pm 2 \mathrm{kV}$
＊Devices being ESD sensitive．HBM（Human Body Mode）is based on MIL－STD－883．
Note：These are stress ratings only．Stresses exceeding the range specified under＂Absolute Maximum Ratings＂ may cause substantial damage to the device．Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability．

D．C．Characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{XTAL}}=16 \mathrm{MHz}$ ， FSK demodulation with matching circuit，unless otherwise specified

Symbol	Parameter	Conditions	Min．	Typ．	Max．	Unit
Top	Operating Temperature	－	－40	－	85	${ }^{\circ} \mathrm{C}$
VD	Operating Voltage	－	2.4	5.0	5.5	V
Current Consumption						
IsLP	Current Consumption，Deep Sleep Mode	－	－	0.5	－	$\mu \mathrm{A}$
IRX	Current Consumption，RX Mode	＠315MHz	－	4.7	－	mA
		＠433MHz	－	4.5	－	
		＠868MHz	－	5.8	－	
		＠915MHz	－	5.8	－	
$\mathrm{R}_{\text {PH }}$	Pull－high Resistance for I／O Ports	－	－	100	－	k Ω

A．C．Characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{XTAL}}=16 \mathrm{MHz}$ ， FSK demodulation with matching circuit，unless otherwise specified

Symbol	Parameter	Conditions	Min．	Typ．	Max．	Unit
Receiver Characteristics						
frF	RF Frequency Range	WL1625A／WL1625B	－	315	－	MHz
		WL1625A／WL1625B	－	433.92	－	
		WL1625B only	－	868.35	－	
		WL1625B only	－	915	－	
SR	Symbol Rate	－	1	－	50	Ksps
$\mathrm{f}_{\mathrm{DEV}}$	Frequency Deviation	－	4	－	25	kHz
Psens ${ }^{(1)}$	RX Sensitivity－315MHz （Instrument：Keysight E4438C）	SR＝1Ksps， $\mathrm{BER}=0.1 \%$	－	－105	－	dBm
		SR＝10Ksps，BER＝0．1\％	－	－108	－	
	RX Sensitivity－433．92MHz （Instrument：Keysight E4438C）	SR＝1Ksps，BER＝0．1\％	－	－106	－	
		SR＝10Ksps，BER＝0．1\％	－	－108	－	
	RX Sensitivity－868．35MHz （Instrument：Keysight E4438C）	SR＝5Ksps，BER＝0．1\％	－	－105	－	
		SR＝10Ksps， $\mathrm{BER}=0.1 \%$	－	－105	－	
	RX Sensitivity－915MHz （Instrument：Keysight E4438C）	SR＝5Ksps，BER＝0．1\％	－	－104	－	
		SR＝10Ksps，BER＝0．1\％	－	－104	－	
SE $\mathrm{R}_{\text {R }}$	Receiver Spurious Emission	25MHz～1GHz	－	－	－57	dBm
		Above 1GHz	－	－	－47	
	Blocking Immunity	$\pm 2 \mathrm{MHz}$ offset	－	40	－	dBc
		$\pm 10 \mathrm{MHz}$ offset	－	64	－	

Symbol	Parameter	Conditions	Min．	Typ．	Max．	Unit
Cofst	Configure Mode Settling Time （Deep Sleep to Configure Mode）	49US XO	－	1.5	－	ms
		SMD3225 XO	－	2.5	－	ms
$\mathrm{R} \mathrm{X}_{\text {st }}$	RX Mode Settling Time （Deep Sleep Mode to RX Mode Data Out）	49US XO	－	1.5	－	ms
		SMD3225 XO	－	2.5	－	ms
LO Characteristics						
fıo	Frequency Coverage Range	WL1625A／WL1625B	300	－	360	MHz
		WL1625A／WL1625B	390	－	450	
		WL1625B only	850	－	935	
	Frequency Resolution	－	－	－	0.1	kHz
	Synthesizer Locking Time	－	－	130	－	$\mu \mathrm{s}$
Crystal Oscillator Characteristics						
$\mathrm{f}_{\text {XTAL }}$	Crystal Frequency	General case	－	16	－	MHz
tsu	X＇tal Startup Time ${ }^{(2)}$	49US XO	－	0.5	－	ms
		SMD3225 XO	－	1.5	－	ms
ESR	X＇tal Equivalent Series Resistance	－	－	－	100	Ω
C_{L}	X＇tal Load Capacitance	－	－	16	－	pF
TOL	X＇tal Tolerance ${ }^{(3)}$	－	－20	－	＋20	ppm

Note：1． $315 / 433 \mathrm{MHz}$ Bands Digital Filter BW $=93.6 \mathrm{kHz}$ $868 / 915 \mathrm{MHz}$ Bands Digital Filter BW $=187.2 \mathrm{kHz}$
2．The X＇tal startup time depends on crystal property．
3．This is the total tolerance including（1）Initial tolerance（2）Crystal loading（3）Aging（4）Temperature dependence．

$I^{2} \mathrm{C}$ Characteristics

$\mathrm{Ta}=-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$ ，unless otherwise specified

Symbol	Parameter	Test Conditions	Min．	Typ．	Max．	Unit
$\mathrm{f}_{\text {Scl }}$	Serial Clock Frequency	－	－	－	1	MHz
teuf	Bus Free Time between Stop and Start Condition	SCL＝1MHz	250	－	－	ns
tıow	SCL Low Time	SCL＝1MHz	500	－	－	ns
thigh	SCL High Time	SCL＝1MHz	500	－	－	ns
$\mathrm{tsu}_{\text {（DAT）}}$	Data Setup Time	SCL＝1MHz	100	－	－	ns
tsul（TA）	Start Condition Setup Time	SCL＝1MHz	250	－	－	ns
$\mathrm{t}_{\text {su（STO）}}$	Stop Condition Setup Time	SCL＝1MHz	250	－	－	ns
$\mathrm{th}_{\text {（Dat）}}$	Data Hold Time	SCL＝1MHz	100	－	－	ns
$\mathrm{th}_{\text {（STA）}}$	Start Condition Hold Time	SCL＝1MHz	250	－	－	ns
$\mathrm{t}_{\text {（SCL）}}$	Rise Time of SCL Signal	SCL＝1MHz	－	－	100	ns
$\mathrm{t}_{\text {（ }}^{\text {（SCL）}}$	Fall Time of SCL Signal	SCL＝1MHz	－	－	100	ns
$\mathrm{tr}_{\text {（SDA }}$	Rise Time of SDA Signal	SCL＝1MHz	－	－	100	ns
$\mathrm{t}_{\text {f（SDA }}$	Fall Time of SDA Signal	SCL＝1MHz	－	－	100	ns

Power on Reset Characteristics

Functional Description

The WL1625x devices are ultra－low power， high performance，low－cost FSK receivers suitable for use in wireless applications with a frequency of $315,433,868,915 \mathrm{MHz}$ respectively．The devices are formed by a low－IF receiver，followed by a FSK demodulator and a fractional－N synthesizer．They only require a crystal and a minimum number of passive components to implement a FSK receiver．

FSK RF Receiver

The WL1625x devices adopt a fully－integrated， low－IF receiver architecture．The received RF signal is first amplified by a low noise amplifier（LNA），after which the frequency is reduced to an intermediate frequency（IF）．The IF signal is filtered by a channel－ selected filter which rejects the unwanted out－of－ band interference signals and image signal．After the BPF stage，the desired IF signal is amplified by the limiter amplifier which generates a received－ signal－strength－indicator（RSSI）signal．

The devices feature an automatic gain control（AGC） unit which adjusts the front－end gain according to the RSSI．The AGC can increase the dynamic range of the RSSI and enable the devices to receive a wide dynamic range RF signal．

The FSK one／zero type data is generated by comparing the RSSI signal to a manipulated threshold． This threshold is crucial to the performance of FSK demodulation．The agile threshold detection mechanism can reduce glitches when there is no RF signal or when long zero data streams are received．It also includes a fast tracking threshold to offer good immunity from co－channel interferences．

Operation Modes

The devices provide four operation modes，power off mode，deep sleep mode，RX mode and configuration mode．

In the deep sleep mode，there is less than $1 \mu \mathrm{~A}$ of sleep mode leakage current with register data retention．
In the RX Mode，the devices execute normal RX operations that receive incoming RF signals from the antenna and then output the demodulated data onto the DO／SDA pin．

In the Configuration Mode，the devices are operated as $\mathrm{I}^{2} \mathrm{C}$ slaves and are programmed by an external MCU．Users can select the desired RX channel by configuring the internal registers．After the configuration has completed，the devices will return to the deep sleep mode by setting the CFOMSD bit high．

Operation Mode Switching
Note：The CFOMSD bit will be cleared to zero automatically when the device leaves the configuration mode．

Sniff RX Mode

The devices also provide a Sniff RX mode as it is controlled by an MCU．The SD／SCL pin defaults to a pull－high state．After power－on the devices will enter the deep sleep mode．An MCU could control the SD／ SCL pin to make it enter or leave the RX mode．With additional SD／SCL control，users can optimize the average power consumption based on their applications．

Configuration Mode

The devices include an $\mathrm{I}^{2} \mathrm{C}$ serial interface，which is used for bidirectional，two－line communication between multiple $\mathrm{I}^{2} \mathrm{C}$ devices．The two lines of this interface are the serial data line，SDA，and the serial clock line，SCL．Both lines are equipped with
de－bounce functions．After a power on reset，these two pins are pulled to DVDD by default using internal pull－high resistors．When entering the RX mode，the pull－high resistors are disconnected．

The devices support the $I^{2} \mathrm{C}$ format for byte write， page write，byte read and page read formats．Every byte placed onto the SDA line must be 8 －bits long． The number of bytes that can be transmitted per transfer is unrestricted．Each byte has to be followed by an acknowledge bit．Data is transferred with the most significant bit，MSB，first．

It should be noted that the $\mathrm{I}^{2} \mathrm{C}$ is a non－standard $\mathrm{I}^{2} \mathrm{C}$ interface，which only supports a single device for connection．

$I^{2} \mathrm{C}$ Communication Timing Diagram

I²C START and STOP Conditions

－A high to low transition on the SDA line while SCL is high defines a START condition．
－A low to high transition on the SDA line while SCL is high defines a STOP condition．
－START and STOP conditions are always generated by the master．The bus is considered to be busy after the START condition．The bus is considered to be free again a certain time after the STOP condition．
－The bus remains busy if a Repeated START（RS） is generated instead of a STOP condition．The START（ S ）and Repeated START（RS）conditions are functionally identical．

Configuration Mode Switching and Timing

As shown in the following diagram，when SDA is low and a SCL falling edge occurs，the device changes from the Deep Sleep Mode to the Configuration Mode after a 1.5 ms delay time．If the SCL level remains high for a time greater than or equal to 20 ms ，the device will be forced to leave the Configuration Mode．

If the devices are connected to an MCU through an $I^{2} \mathrm{C}$ interface，users can set the CFOMSD bit of the register， at address 40 h ，to leave the Configuration Mode．

Entering and Leaving Configuration Mode Timing Diagram

Register Map

When connected to an external MCU，the device＇s RF frequency can be setup using a series of internal registers in the Configuration Mode．The register data is written to and read from the devices using their internal $\mathrm{I}^{2} \mathrm{C}$ interface． The following provides a summary of all internal registers and their detailed descriptions．

Address	Register Name	Bit							
		7	6	5	4	3	2	1	0
00h	－	Reserved							
05h	FSKDM1	Reserved						MDIV＿SEL［1：0］	
06h	－	Reserved							
07h	－	Reserved							
09h	－	Reserved							
OAh	－	Reserved							
10h	OM	－	BAN	［1：0］	－	－	－	－	－
11h	－	Reserved							
12h	SX1	－			D＿N［6：0］				
13h	SX2	D＿K［7：0］							
14h	SX3	D＿K［15：8］							
15h	SX4	－	－	－	－				
1Bh	－	Reserved							
1Fh	－	Reserved							
32h	－	Reserved							
40h	I2C1	Reserved							CFOMSD
43h	－	Reserved							
46h	－	Reserved							

Note：The addresses which are not listed in this table are reserved for future use，it is suggested not to change their initial values by any methods．
The recommended values for the registers are listed below：

Addr．	Setting	Addr．	Setting
00 h	60 h	1 Bh	2 Fh
06 h	71 h	1 Fh	10 h
07 h	07 h	32 h	82 h
09 h	7 Fh	43 h	315MHz Band： 84 h $433 / 868 / 915 \mathrm{MHz}$ Bands： 80 h
0 Ah	7 Fh	46 h	01 h
11 h	69 h		

－FSKDM1－FSK De－Modulator Control Register 1 （Addr：05H）

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	-	-	-	-	-	-	MDIV＿SEL［1：0］	
R／W	-	-	-	-	-	-	R／W	
POR	1	0	0	0	0	0	0	1

Bit 7～2 Reserved bit，cannot be changed
Bit 1～0 MDIV＿SEL［1：0］：Demodulator operation clock divider selection
00： 187.2 kHz
01： 93.6 kHz
10： 46.8 kHz
11：reserved
－OM－Operation Mode Control Register（Addr：10H）

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	-	BAND＿SEL［1：0］		-	-	-	-	-
R／W	-	R／W		-	-	-	-	-
POR	0	0	0	0	0	0	0	0

Bit 7 Reserved bit，cannot be changed
Bit 6～5 BAND＿SEL［1：0］：Band selection
00：300～360MHz Band
01：390～450MHz Band
10：Reserved
11：850～935MHz Band（BC2502B Only）
Bit 4～0 Reserved bit，cannot be changed
－SX1－Fractional－N Synthesizer Control Register 1 （Addr：12H）

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	-	D＿N［6：0］						
R／W	-	R／W						
POR	1	0	1	0	1	0	1	1

Bit 7 Reserved bit，must be set＂ 1 ＂
Bit 6～0 D＿N［6：0］：RF channel frequency integer number code
D＿N［6：0］$=$ Floor $\left(\frac{f_{\text {RF }}-f_{\text {IF }}}{f_{\text {XTAL }}} \times 0.8\right) \times \mathrm{M},(315 \mathrm{MHz}: \mathrm{M}=2$ ，Other Bands： $\mathrm{M}=1)$
For example：
$\mathrm{f}_{\text {XTAL }}=16 \mathrm{MHz}$ ，RF channel frequency $\left(\mathrm{f}_{\mathrm{RF}}\right)=315 \mathrm{MHz}$ ，Intermediate Frequency $\left(\mathrm{f}_{\mathrm{IF}}\right)=200 \mathrm{kHz}$
$\rightarrow(315 \mathrm{MHz}-0.2 \mathrm{MHz}) /(16 \mathrm{MHz}) \times 0.8 \times 2=31.48$
\rightarrow D＿N＝31
$\rightarrow \operatorname{Dec} 2 \operatorname{Bin}(31)=001 _1111$
$\mathrm{f}_{\mathrm{XTAL}}=16 \mathrm{MHz}, \mathrm{RF}$ channel frequency $\left(\mathrm{f}_{\mathrm{RF}}\right)=433.92 \mathrm{MHz}$ ，Intermediate Frequency $\left(\mathrm{f}_{\mathrm{IF}}\right)=200 \mathrm{kHz}$
$\rightarrow(433.92 \mathrm{MHz}-0.2 \mathrm{MHz}) /(16 \mathrm{MHz}) \times 0.8=21.686$
\rightarrow D＿N＝21
\rightarrow Dec2Bin（21）＝001＿0101
－SX2－Fractional－N Synthesizer Control Register 2 （Addr：13H）

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name								
R／W	R／W：0］							
POR	1	0	1	1	0	1	1	1

Bit 7～0 D＿K［7：0］：RF channel frequency fractional number code lowest byte
－SX3－Fractional－N Synthesizer Control Register 3 （Addr：14H）

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	D＿K［15：8］							
R／W	1	1	1	1	0	0	1	1
POR	1	R／W						

Bit 7～0 D＿K［15：8］：RF channel frequency fractional number code medium byte
－SX4－Fractional－N Synthesizer Control Register 4 （Addr：15H）

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$				
Name	-	-	-	-	D＿K［19：16］							
R／W	-	-	-	-	R／W							
POR	0	1	1	0	0	1	0	1				

Bit 7～4 Reserved bit，cannot be changed
Bit 3～0 D＿K［19：16］：RF channel frequency fractional number code highest byte
D＿K［19：0］$=$ Floor $\left\{\left(\frac{f_{\text {RF }}-f_{\text {IF }}}{f_{\text {XTAL }}} \times 0.8 \times \mathrm{M}-\right.\right.$ D＿N［6：0］$\left.\times 2^{20}\right\},(315 \mathrm{MHz}: \mathrm{M}=2$ ，Other Bands： $\mathrm{M}=1)$
For example：
$\mathrm{f}_{\text {XTAL }}=16 \mathrm{MHz}$ ，RF channel frequency $\left(\mathrm{f}_{\mathrm{RF}}\right)=315 \mathrm{MHz}$ ，Intermediate Frequency $\left(\mathrm{f}_{\mathrm{IF}}\right)=200 \mathrm{kHz}$
$\rightarrow(315 \mathrm{MHz}-0.2 \mathrm{MHz}) /(16 \mathrm{MHz}) \times 0.8 \times 2=31.48$
\rightarrow D＿K $=0.48 \times 2^{20}=503316$
$\rightarrow \operatorname{Dec} 2 \operatorname{Bin}(503316)=0111 _1010 _1110 _0001 _0100$
$\mathrm{f}_{\mathrm{XTAL}}=16 \mathrm{MHz}, \mathrm{RF}$ channel frequency $\left(\mathrm{f}_{\mathrm{RF}}\right)=433.92 \mathrm{MHz}$ ，Intermediate Frequency $\left(\mathrm{f}_{\mathrm{IF}}\right)=200 \mathrm{kHz}$
$\rightarrow(433.92 \mathrm{MHz}-0.2 \mathrm{MHz}) /(16 \mathrm{MHz}) \times 0.8=21.686$
\rightarrow D＿K $=0.686 \times 2^{20}=719323$
$\rightarrow \operatorname{Dec} 2 \operatorname{Bin}(719323)=1010 _1111 _1001 _1101 _1011$
－I2C1－$I^{2} \mathrm{C}$ Control Register 1 （Addr：40H）

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	-	-	-	-	-	-	-	CFOMSD
R／W	-	-	-	-	-	-	-	R／W
POR	0	0	0	0	0	0	0	0

Bit 7～1 Reserved bit，cannot be changed
Bit 0 CFOMSD：Configuration Mode shut down control
0：No operation
1：Exit Configuration Mode
In the configuration mode the devices can be forced to leave this mode by first setting the CFOMSD bit high and then followed by an $\mathrm{I}^{2} \mathrm{C}$ stop condition．After leaving the Configuration Mode the CFOMSD bit will be reset to zero automatically．

Application Circuits

Package Information

Note that the package information provided here is for consultation purposes only．As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package／Carton Information．

Additional supplementary information with regard to packaging is listed below．Click on the relevant section to be transferred to the relevant website page．
－Package Information（include Outline Dimensions，Product Tape and Reel Specifications）
－Packing Meterials Information
－Carton information

10－pin SOP－EP（150mil）Outline Dimensions

Symbol	Dimensions in inch		
	Min．	Nom．	Max．
A	-	0.236 BSC	-
B	-	0.154 BSC	-
C	0.012	-	0.018
C＇$^{\prime}$	-	0.193 BSC	-
D	-	-	0.069
D1	0.059	-	-
E2	-	0.039 BSC	-
F	0.039	-	-
G	0.000	-	0.006
H	0.016	-	0.050
α	0.004	-	0.010
0°	-	8°	

Symbol	Dimensions in mm		
	Min．	Nom．	Max．
A	-	6.0 BSC	-
B	-	3.9 BSC	-
C	0.30	-	0.45
C＇$^{\prime}$	-	4.9 BSC	-
D	-	-	1.75
D1	1.50	-	-
E	-	1.0 BSC	-
E2	1.00	-	-
G	0.00	-	0.15
H	0.40	-	1.27
α	0.10	-	0.25

